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ABSTRACT: Due to the presence of curing stresses and oriented crystalline structures in th
matrix of polymer matrix fiber composites, the in situ nonlinear properties of the matrix ar
expected to be rather different from those of the bulk resin. A plane stress micromechanic:
model was developed to retrieve the in situ elastic-plastic properties of Narmco 5260 and Amoc
8320 matrices from measured elastic-plastié 7prroperties of IM7/5260 aﬁd IM7/8320 advance
composites. In the micromechanical model, the fiber was assumed to be orthotropically elasti
and the matrix to be orthotropic in elastic and plastic properties. The results indicate that both i

situ elastic and plastic properties of the matrices are orthotropic.

KEY WORDS: micromechanics, polymer matrix composites, temperature, plasticity, off-ax

testing.



Introduction

The use of polymer matrix composites (PMC's) in primary and secondary structure is being
considered for the High Speed Civil Transport(HSCT) aircraft. This vehicle will be a large
commercial transport designed for supersonic flight and a 60,000 hour useful lifetime. It is
expected that during supersonic flight, the PMC's will carry high loads under sustained elevated

temperature conditions. In such environments, nonlinear and inelastic stress-strain behaviors may

become a design concern and therefore must be accounted for in constitutive relations.

For composites consisting of polymer matrices reinforced by high modulus graphite fibers, the
inelastic properties of the composite stem from the matrix since the graphite fiber remains
basically linearly elastic for the entire temperature range that is of practical interest. Thus, to
characterize the nonlinear inelastic properties of the composite, the nonlinear properties of the

matrix must be characterized first.

It is assumed that the in situ matrix stress-strain behavior is different from that of the neat resin
because of the variation in crystalline structures, the presence of curing stresses, and the
interaction between the matrix and the fibers. Thus, the bulk matrix properties cannot be used to
represent the matrix properties in the composite. Theoretically, a complete non isothermal
inelastic constitutive model could be developed to account for the curing history and to describe
the in situ mechanical properties of the matrix. Alternatively, one could retrieve the in situ matrix

properties from the measured mechanical properties of the orthotropic plate.

It is conceivable that the amount of work required in the first approach is significantly greater
than that of the second approach. Moreover, modeling the orthotropic elastic-plastic and time-
dependent elastic-plastic behaviors of fiber composites has been established [1-3]. Simple uniaxial
testing of off-axis composite specimens has been shown to be sufficient to characterize these

nonlinear properties. In view of the foregoing, the second approach is followed in this study.



To recover the matrix properties from those of the composite, one needs a micromechanical
model that predicts composite properties based on matrix properties. Sun and Chen [4] have
developed a micromechanical model for composites containing elastic fibers and elastic-plastic
matrices. The fiber was assumed to be elastic and orthotropic, and the matrix was assumed to be
isotropic. If these constituent properties are known, the global composite elastic-plastic

properties can then be calculated.

The present research extends the micromechanical model of [4] to include the in situ
orthotropic elastic-plastic properties of the matrix. Using parameters found experimentally in
previous studies [5], the off-axis stress-strain curves are produced for two PMC’s (IM7/5260 and
IM7/8320) under isothermal, elevated temperature test conditions (23°Cto 200°C). The

micromechanical model is then used to retrieve the in situ matrix properties of these composites.

Micromechanical Model

In the micromechanical model developed by Sun and Chen [4], the composite material is
represented by a unit cell containing a fiber of a square cross-section and the surrounding matrix.
Inherent in this micromechanical model is the need to know the constituent material properties.
Since the in situ matrix properties can be quite different from those of the bulk matrix material,
adjustment of the matrix properties in the micromechanical model is often necessary to yield

good results [4,6].

The square array of fiber distribution is assumed. To simplify the analysis, the fiber is
assumed to have a square cross-section. A quadrant of the representative volume is shown in Fig.

L.

The composite cross-section consists of two major parts, i.e., part A and part B (see Fig. 1).
Part B is a pure matrix region, and part A consists of fiber AF and a matrix region denoted by

AM. The coordinate system is set up so that the x, axis is parallel to the fiber-direction. A state



of plane stress parallel to the x;—x; plane is assumed; i.e., 633 = 023 = 013 =0. In addition, the

following assumptions are made:
a. Ineach subregion, AF, AM, or B, the stress and strain fields are unifom.

b. Inregion A, the stress fields and strain fields in AF and AM follow the appropriate

constant stress or constant strain assumption, i.e.,

0'1\2F =o{M =0}, (constant stress)

o =aM =0% (constant stress) (D

ie.,
A _.B _
€11 =€ =€)
A _ B _
EN=EN = E&x @

Y‘f‘z =7]132 =Y12

In equations (1-2), superscripts A, B, AF and AM denote subregions A, B, AF and AM,
respectively. For region A that includes subregions AF and AM, the average stresses and strains

arc
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For the entire representative volume, the average stresses and strains are

=L oA B
oy = ——([ofdA+[ofdA) (5)
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in which A, B, AF and AM denote the areas of designated regions, respectively.

A similar model was proposed by Aboudi [7] who divided the representative volume into
four subregions. In each region, a linear variation of displacements was assumed, and the
resulting tractions as well as the displacements at the interfaces between the adjacent subregions
were required to satisfy the equilibrium and continuity conditions, respectively. Since fewer

subregions are considered, the present formulation is somewhat simpler than that of Aboudi.

Substitution of equations (1-2) into equations (3-6) yields

A _ AF AM
011 =V1011 + V201
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and
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Equations (1-2) and (7-8) are the basic relations between the micromechanical and the
corresponding average macromechanical stresses and strains. To establish the relations between
the avérage stresses O;; and strains €;;, the stress-strain relations of fiber and matrix must bq 7
given first.

The fiber is considered an orthotropic linear elastic material. The elastic constants are:
Ef = longitudinal Young’s modulus, E§ = transverse Young’s modulus, Gf, = in-plane shear
modulus, vfz = Poisson’s ratio. Thus, in subregion AF we have the incremental stress-strain

relations
(deF ) =[SF] (doF) )

where
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In bulk form, polymer matrices can be considered isotropic. However, inside the
composite, the matrix is effectively an anisotropic material. The crystalline structure may
become oriented due to the interaction with the fibers and the presence of thermal stresses.
Moreover, the actual state of thermal residual stresses in the matrix is quite complicated and
cannot be easily predicted. For these reasons, we propose to include all these initial effects in

the effective matrix properties.

The matrix material is considered an effectively orthotropic elastic-plastic material for

which the plastic strain increments de}}M are given by

oJm
defM =d\ —— 11
: o7 (n

where dA is a proportionality factor, and the plastic potential Jy; is assumed to take the form

1
I =3 (o) + () + 2riz0t o} + 2166 (1)) (12)

where 111, 113 and rg6 are coefficients of anisotropy. This is a reduced form for plane stress from
the complete quadratic potential for orthotropic materials. Note that for isotropic materials,

rp =1, 112 =-0.5, 166 = 1.5 and Jy; reduces to the classical J, function.

Define the effective stress as



" =3l

The effective plastic strain increment de’ " is derived from the plastic work increment,

-M —M
G de = oMdefM
Then,
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Using (12) and (16), the explicit plastic stress-strain relations of (11) can be written as

' ’ ~ \
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(15)

(16)

17

(18)

is called the generalized plastic modulus of the matrix material, which, in general, is a function

of the loading history.

Rewriting equation (17) in matrix form in terms of stress increments and adding to it the

elastic strain components, we obtain



(deM ) =[SM] (doM ) (20)
where
(de“ (d011
(deM) =qaehht ., (doM) ={do¥} 1)
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[SM] is the elastic-plastic compliance matrix whose entities are given b
p P g y
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Applying the matrix model mentioned above to Part AM, we obtain
{de®™) =[S*M] (do*M ) (23)

in which the compliances Sfj\M

depend on the elastic and plastic properties of the matrix.
A AM _AF,

Equations (1), (9) and (23) are used to eliminate Gij . O}, €& and eﬁ‘M in equation (7) with

the result

defy S S Sfs | [dofy
{dedy p= [SH S% S% [{dod ¢ (24)
dyy | S8 S& S& [ |dot
Inverting equation (24), we obtain
{do* ) =[C*] {de?) (25)

Region B contains only the matrix. The incremental stress-strain relations are given by
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(de® } =[S%] {do® ) (26)
where Sg are identical to Si’}M .
Inverting equation (26), we obtain
(do® ) =[C%] (de?) @7)
where

[CB1=(sB]! (28)

From equation (8) together with equations (25) and (27), we obtain the incremental stress-

strain relation for the composite,

{do} =[C] (de} 29)

where
[C1=vAIC*] +vIC®) (30)

The inverse relation of equation (29) is

(de} = [S]{do]) €}

where
[S1=[C] (32)

In Situ Elastic-Plastic Matrix Properties

The incremental stress-strain relations given by equation (31) are nonlinear since S

depend on the current state of stress in the matrix, i.e., cf}M and 68. An incremental numerical
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procedure can be used to obtain the solution.

The incremental stress-strain relations given by equation (31) can be used to predict the
elastic-plastic stress-strain behavior of composites if the in situ fiber and matrix properties are
known. Conversely, these relations can be used to estimate the in situ matrix properties based on

the composite stress-strain data.

Although neat resins are usually considered isotropic materials, the in situ resin matrix
elastic and plastic properties may not be isotropic. This is due to the presence of thermal
residual stresses in the composite and oriented crystalline structures in the matrix caused by
thermal stresses during curing. For this reason, we then assume that the matrix is elastically
orthotropic and its initial plastic behavior is also orthotropic. In plane stress, four elastic
constants EY, EM, GM and v are 1o be determined. Three orthotropy coefficients in the
plastic potential (see equation (12)), ry;, rj2 and rgs are needed. In addition, the effective
stress-effective plastic strain relation must be determined. In this study, the poWer law is

employed, i.e.,
& =BG )" (33)

where o and [ are two temperature-dependent coefficients.

The composite elastic-plastic stress-strain behavior can be described by its off-axis stress-
strain curves [1]. For an off-axis coupon specimen under a uniaxial stress ¢, the total strain is

obtained as [1]

Ox
&x = 7 +h(®)"™ K(o,)" (34)

X

where E, is the apparent elastic modulus in the loading (x-) direction, K and n are material

constants, and
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h(0) = [% (sin*0 + 2agg sin?0 cos20)]'/2 (35)

In equation (35), 0 is the off-axis angle and ag is the orthotropy coefficient describing the

orthotropic nature of initial plasticity of the composite.

The first term on the right-hand-side of equation (34) represents the elastic part of the
strain, and the second term represents the plastic strain. From the coordinate transformation law,
the apparent modulus E, can be calculated from the principal elastic moduli E;, E,, G2 and vy;
as

\Y in?
= +( -2 12 )sinzecos26+ sin 6

1
- (36)
E, E, G2 E; E;

The second term on the right-hand-side of equation (34) represents the plastic strain. For
fiber composites, the plastic strain increments can be derived from the flow rule similar to that of

equation (11) with the one-parameter plastic potential [1],
1 2
Jeomp = = (6%, + 2656;) (37)

together with the effective stress-effective plastic strain relation
e =K(0o) (38)

where

o= \/3Jcomp
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Materials and Specimens

Two advanced PMC’s were selected for this study. The first, IM7/8320, is a
graphite/thermoplastic manufactured by AMOCO Corporation and fabricated in a hot press at
NASA Langley Research Center (LaRC). The second PMC, IM7/5260, a
graphite/bismaleimide, was manufactured by BASF Corporation and autoclave fabricated at
NASA LaRC. The glass transition temperatures, Tg, of the manufactured panels were measured

by DSC at NASA LaRC to be 220°C and 240°C for the IM7/8320 and IM7/5260, respectively.

All panels were C-scanned prior to cutting the specimens and inspected for visible defects.
Tensile test specimens cut from the panels measured 241 mm x 25 mm and were 12 plies thick.
Longitudinal and transverse elastic constants were measured from [0] to [90] layups,

respectively. The shear modulus was measured from a [+45]5; layup.

Composite Material Testing

Specific explanations of the test methods used to obtain the material constants for the
orthotropic plate can be found in [8]. Testing was performed with a servo-hydraulic test
machine capable of running predetermined load or strain history profiles. Load, as measured by
the load cell, was converted to stress using the average cross sectional area of the specimen
measured prior to testing. Axial strain was measured on the off-axis tests by using
extensometers. Two extensometers, mounted opposite each other, were placed along the
specimen’s thin edge in the center section. For the [0];; and [¥45], specimens, which required
both axial and transverse strain measurement, back-to-back, center mounted strain gages were
used.

In addition to the elastic constants, only three material constants are required for the

orthotropic plasticity model for any given temperature. These constants are: agg for the plastic

potential function and K and n for the quasistatic plastic stress-strain relations. These constants



15

were all found using data from simple off-axis tension tests. By testing under strain control, all
of the constants were extracted from uniaxial tests with repeated hold times built in to allow for
stress relaxation. During stress relaxation, the stress decreased rapidly towards some limiting
value. This limiting value was assumed to be the quasistatic stress and represented the stress
needed to solve the elastic/plastic quasistatic equation for a given strain. By repeating these
periods of stress relaxation during the course of the test, enough quasistatic points were obtained

to allow a smooth curve to be constructed to represent the quasistatic behavior.

Once the quasistatic points were known, a smooth stress/strain curve was then generated
through these points and converted into an effective stress-effective plastic strain curve. These
uniaxial stress-plastic strain curves from different off-axis tests were then plotted together and
collapsed into a single master curve by selecting the appropriate value of agg. The master curve
was then fit with a power law relation which defined the values of K and n (see equation (34))

needed by the quasistatic analysis.

Results

The orthotropic elastic-plastic properties of IM7/5260 and IM7/8320 composites have been
obtained by Gates [5] using off-axis coupons specimens. In Table 1 the elastic moduli
E|. E3, Gyg, vi2 and coefficients K, n, agg, in the plasticity models for the two composites are
reproduced from [5]. These composite properties are used to recover the in situ matrix
properties.

Since there are a number of constants to be determined based on the composite data, it is
necessary to start by using some fiber and matrix properties that we are relatively certain of. For
instance, carbon fiber IM7 is a temperature-stable linearly elastic material whose longitudinal
modulus E and Poisson’s ratio v'fz have been reported. Usually, the fiber volume fraction of
the composite is determined by other methods. Starting with this initial information, we then

proceed to match the measured composite elastic moduli with those predicted by the
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micromechanical model.

From the 0° and 90° specimens, E;, E, and v, of the composite are directly determined.
Since the longitudinal property of the 0° specimen is strongly dominated by the longitudinal
modulus Ef of the fiber, this data can be used to check the value of EY and the fiber volume
fraction. From the micromechanical model and the 07 = and 90° composite data, we obtain
EE, E'f‘, E%‘ and v’ﬁ. From other off-axis specimen data, G'fz and G];‘% are determined. Of
course, this procedure is iterative, and these unknown elastic constants can be varied to fit all the
composite data.

After the elastic constants are determined, we then proceed to determine the coefficients in
the plasticity model for the matrix using the entire stress-strain curves of the composite. The
coefficients to be determined are ry), i3, 16, P and Q.

Based on our experience, in a fiber cdm;f)z)gité,ﬁthéﬁirndé; o of the ﬁoWeirr;iE;,iéa;atién 7(33),'
for the matrix is similar to that (n) of the corrrilpo»site (see equation (34)). Thus, we set «x=n. The
numerical results also indicate that r;; =1 and rj =—0.5 which are the same as in the I
function of isotropic materials. This is consistent with the result for matrix elastic moduli, i.e.,

EM= E%‘ Therefore, only two coefficients rg and B must be determined.

The fiber volume fraction is found to be 0.55 for both composites. The elastic moduli of

the IM7 carbon fiber are

Ef =2760GPa , Ef=13.8GPa , v, =025 , GF,=200GPa

The results for the elastic and plastic properties of Narmco 5260 and Amoco 8320 are listed

in Tables 2 and 3, respectively.
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Discussion

From the results listed in Tables 2 and 3, we see that the orthotropy coefficient rgg remains
almost constant over the entire temperature range. For isotropic materials, rgg = 1.5. Thus, we
can say that Amoco 8320 is plastically more anisotropic than Narmco 5260. The greater in situ
matrix plastic orthotropy of both matrices implies the presence of significant effects of thermal

residual stresses in the composites.

It is interesting to compare the values of o for the two matrix systems. For Narmco 5260,
the value of o increases as temperature increases. This implies that at lower temperatures, the
matrix exhibits greater hardening, and that at higher temperatures, the matrix approaches an
ideal elastic-perfectly plastic solid. On the other hand, the value of o for Amoco 8320 decreases
toward the region of high temperatures. This indicates that at high temperatures either the

matrix hardens plastically or it fails at small strains before plasticity is fully displayed.

Figure 2 presents the representative effective stress-effective plastic strain curves (the
master curves) for IM7/5260 at 175°C and 150°C obtained by Gates [5]. Figure 3 shows the
total stress-strain curves for IM7/5260 for a number of off-axis specimens derived from the
master curve given in Fig. 2. Using the recovered in situ matrix properties together with the
fiber elastic moduli, the stress-strain curves for the off-axis specimens are calculated for both
composite systems at various temperatures. The results are presented in Figs. 4-15 along with

some of the original data from individual specimens.

Comparison of the predicted and measured behavior, as shown in Figs. 4-15, indicates that
the micromechanical model can describe the off-axis stress-strain curves through the use of the
recovered in situ matrix properties. These figures show a good comparison for a number of off-
axis angles covering a wide range of test temperatures. Only the data for the 25° specimen of

IM7/8320 at 120°C (Fig. 6) shows a poor correlation between test and prediction.
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Examination of Figs. 4-15 leads to some general comments regarding the accuracy of the
model and the reliability of the test data. First, it should be noted that the predictions were made
out to approximately 2% strain; however, the test data typically ended prior to 1% strain levels.
It is recognized that prediction beyond the range of test data is purely extrapolation and remains- |
to be verified. Most of the specimens tested had off-axis angles from 15° to 30°. Off-axis tests
in this angle range will experience the highest degree of extension-shear coupling. This
coupling, which is known to cause bending stress across the width of the specimen may be a

source of error when measuring axial strains.

Although the test data given in the figures represent averaged values of repeated tests, most
of the predicted curves lay below the test data. This may be due to the fact that the elastic-
plastic stress-strain response was measured by performing multiple stress relaxation events
during the course of a strain controlled test [8]. Since a "true” time-independent response is not

experimentally obtainable, the elastic-plastic data represent the quasistatic behavior.

Another source of possible error may occur in the procedure of estimating the shear
modulus G‘f-z of the fiber. It was found that the composite properties were not sensitive to the
variation of G,. The value of G¥, chosen for this study may not have been accurate. It would
be highly advantageous to determine the fiber elastic constants separately since the fiber

properties are not altered in the composite.

Conclusion

A micromechanical model consisting of an elastic fiber and an orthotropic elastic-plastic
matrix has been developed to predict composite elastic-plastic behavior. It was demonstrated
that this model can be used to retrieve the in situ elastic and plastic matrix properties from the
composite properties. Due to the presence of unknown thermal residual stresses and oriented
crystalline structures, the matrix should be assumed to be effectively 6rthotropic in elastic and

plastic properties. The predicted off-axis tensile stress-strain behavior compares favorably to the
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measured response of the two advanced PMC’s at elevated temperatures.
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Table 1--Tensile Elastic and Plastic Properties of IM7/5260

and IM7/8320 Composites [5].
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Material Elastic Elastic/Plastic
Type °C  E;(GPa) E;(GPa) Gj;(GPa) vy, a6 KMPa)™ n

23 152.8 8.7 52 030 060 S.O07E-10 3.34
IM7/5260 70 161.7 9.2 5.7 031 060 1.13E-09 3.35
Tension 125 156.5 8.8 53 036 060 1.18E-09 3.63
150 165.3 8.8 5.1 035 060 874E-12 496
175 136.4 7.7 5.1 030 060 1.74E-14 7.06
200 154.3 7.5 5.1 035 0.60 2.17E-17 9.64
23 157.9 7.1 43 032 030 886L-12 548
IM7/8320 70 153.8 7.9 43 034 030 2.19E-08 3.36
Tension 125 142.0 7.5 4.7 035 030 361E-11  5.50
150 152.9 7.3 4.4 033 030 248E-12 6.28
175 1539 7.2 34 032 030 4.85E-08 384
200 147.3 5.5 2.6 035 030 6.16E-05 2.66




Table 2. Predicted Properties for Matrix Narmco 5260

22

Temp.(°C) 23 70 125 150 175 200
E,(GPa)  4.69 4.69 4.69 4.69 3.81 3.65
E,(GPa)  4.69 4.69 4.69 4.69 3.81 3.65
Gy2(GPa) 170 1.70 1.70 1.70 1.68 1.68

Viz 0.38 0.38 0.38 0.38 0.38 0.38
Tes 0.56 0.55 0.58 0.54 0.53 0.53
BMPa)®  0.35X10°% 0.76X10°% 091Xx10®% 0.1X10° 0.38X1071? 0.1X107%
o 3.34 3.35 3.63 4.96 7.06 9.64
Table 3. Predicted Properties for Matrix Amoco 8320

Temp.( °C) 23 70 125 150 175 200
E;(GPa) | 3.40 3.40 3.40 3.40 3.32 2.20
E,(GPa) 1.90 3.40 3.40 3.40 3.32 2.20
G12(GPa) | 1.44 1.44 1.44 1.35 1.12 85

Vi2 0.4 0.4 0.4 0.4 0.4 0.4
Tes 0.28 0.28 0.28 0.25 0.3 0.3
BMMPay™ | 0.12X107 | 0.17X107® | 0.5X10™° | 0.29X10°% | 0.4107 | 0.36X1072
o 5.48 3.36 5.48 6.28 3.84 2.66




Fig. 1--Geometry of the micromechanical model.
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Fig. 2--Representative master curves and data for IM7/5260.
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Fig. 4 Stwess-strain curves for 711%7/87320 at 23° C predicted by the micromechanical model.
Symbols represent data from individual specimens.
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Fig. 5 Stress-strain curves for IM7/8320 at 70° C predicted by the micromechanical model.
Symbols represent data from individual specimens.
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Fig. 6 Stress-strain curves for IM7/8320 at 125° C predicted by the micromechanical model.
Symbols represent data from individual specimens.
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Fig. 7 Stress-strain curves for IM7/8320 at 150° C predicted by the micromechanical model.
Symbols represent data from individual specimens.
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Fig. 8 Stress-strain curves for IM7/8320 at 175° C predicted by the micromechanical model.

Symbols represent data from individual specimens.
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Fig. 9 Stress-strain curves for IM7/8320 at 200° C predicted by the micromechanical model.
Symbols represent data from individual specimens.
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Fig. 10  Stress-strain curves for IM7/5260 at 23° C predicted by the micromechanical model.
Symbols represent data from individual specimens.
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Fig. 11  Stress-strain curves for IM7/5260 at 70° C predicted by the micromechanical model.
Symbols represent data from individual specimens.
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Fig. 12 Stress-strain curves for IM7/5260 at 125°

Symbols represent data from individual s

pecimens.
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C predicted by the micromechanical model.
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Fig. 13 Stress-strain curves for IM7/5260 at 150° C predicted by the micromechanical model.
Symbols represent data from individual specimens.
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Fig. 14  Stress-strain curves for IM7/5260 at 175° C predicted by the micromechanical model.
Symbols represent data from individual specimens.
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Fig. 15 Stress-strain curves for IM7/5260 at 200° C predicted by the micromechanical model.
Symbols represent data from individual specimens.
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